3D Bilateral Filtering on the GPU

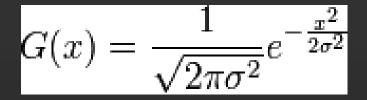
E. Wes Bethel 13 April 2010 Lawrence Berkeley National Laboratory

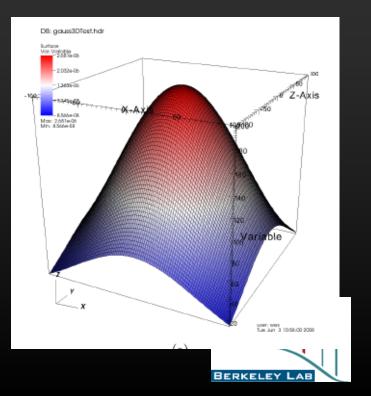
Outline

What is Bilateral Filtering?
CUDA Background
GPU implementation project objectives.
The implementation, performance evaluation, optimization: algorithmic design choices, tunable algorithm parameters.

Gaussian Smoothing

- Convolution kernel, a stencil-based algorithm.
- Weights are a 2D Gaussian (right).
- Idea: nearby pixels have more influence, distant pixels have less influence.





Bilateral Filtering/Smoothing

- Dest pixel *i* is the sum of:
- Gaussian weight of nearby pixel <u>i</u>
- <u>"Photometric</u> <u>difference" between</u> <u>pixel *i* and pixel *i*</u>
- Normalization constant *k* – *c* weights are data dependent.

$$d(i) = \frac{1}{k(i)} \sum g(i, \bar{i}) c(i, \bar{i})$$

$$g(i,\overline{i}) = e^{-\frac{1}{2}\left(\frac{d(i,\overline{i})}{\sigma_d}\right)^2}$$

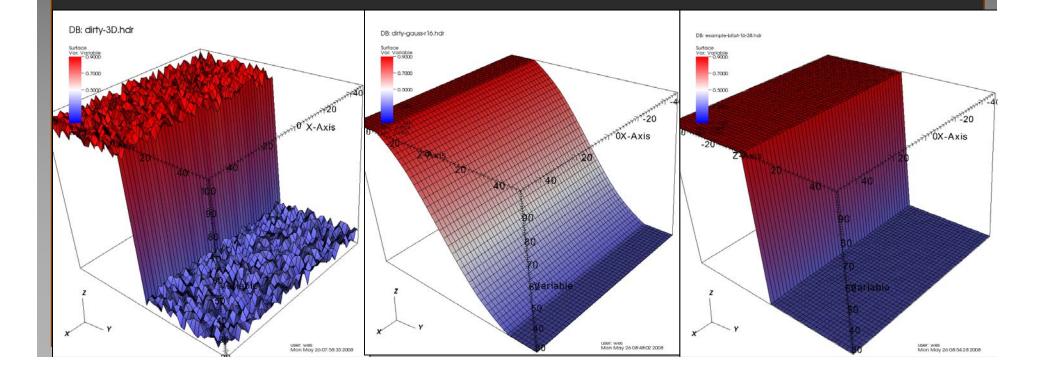
$$k(i) = \frac{1}{\sum g(i,\bar{i})c(i,\bar{i})}$$

Comparison of Bilateral and Gaussian Smoothing

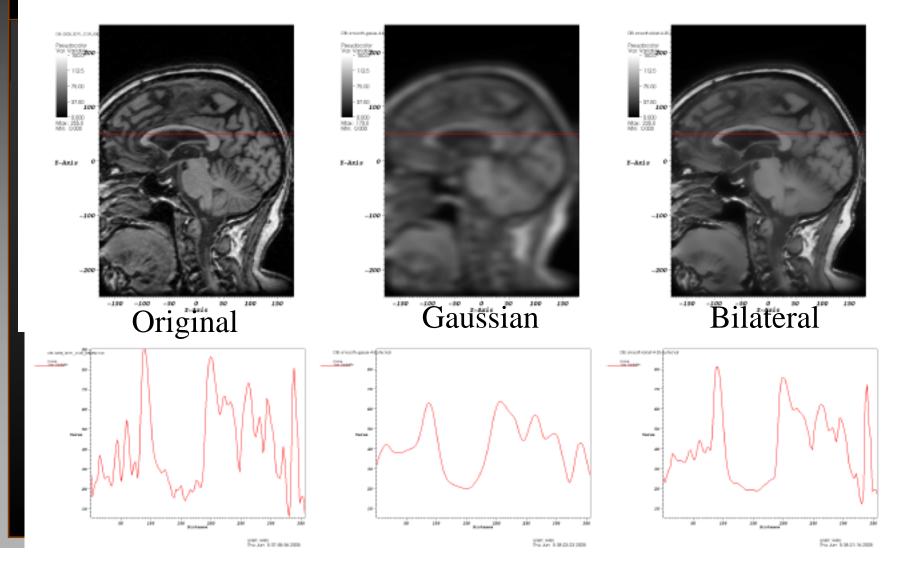
Synthetic data with gaussian noise

Gaussian smoothing

Bilateral smoothing

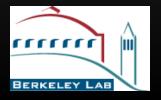


Comparison of Bilateral and Gaussian Smoothing



Why Bother with GPU Implementation?

- This algorithm is compute-bound for large filter radii.
- Long run-times:
 - R=8, ~8min, R=16, ~60min.
- Data parallel algorithm, non-iterative.



GPU Implementation Objectives

- Gain experience developing in CUDA
 Performance optimization
 - Algorthmic design choices: device memories and access patterns.
 - Tunable parameters: thread block size/shape

CUDA Background

Data parallel programming language:

- Eg., A[I] = B[I] + C[I]
- Runs in parallel on all cores on the GPU.
 - GeForce GTX 280: 30 "multi-processors", 8 cores/MP, 240 cores total.

Requires GPU code and host code (next slides)

Example: Vector Addition Kernel

// Pair-wise addition of vector elements
// One thread per addition

```
_global__ void
vectorAdd(float* iA, float* iB, float* oC)
{
    int idx = threadIdx.x
        + blockDim.x * blockId.x;
        oC[idx] = iA[idx] + iB[idx];
}
```

Example: Vector Addition Host Code

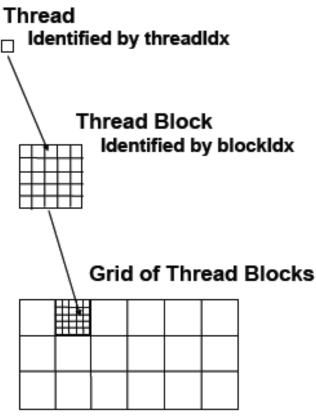
float* h_A = (float*) malloc(N * sizeof(float));
float* h_B = (float*) malloc(N * sizeof(float));
// ... initalize h A and h B

```
// allocate device memory
float* d_A, d_B, d_C;
cudaMalloc( (void**) &d_A, N * sizeof(float)));
cudaMalloc( (void**) &d_B, N * sizeof(float)));
cudaMalloc( (void**) &d_C, N * sizeof(float)));
```

```
// copy host memory to device
cudaMemcpy( d A, h A, N * sizeof(float),
    cudaMemcpyHostToDevice) );
cudaMemcpy( d B, h B, N * sizeof(float),
    cudaMemcpyHostToDevice) );
```

// execute the kernel on N/256 blocks of 256 threads each
vectorAdd<<< N/256, 256>>>(d_A, d_B, d_C);
• NVIDIA Corporation 2006<<<<nblocks, nthreads>>>

Execution Model



Result data array

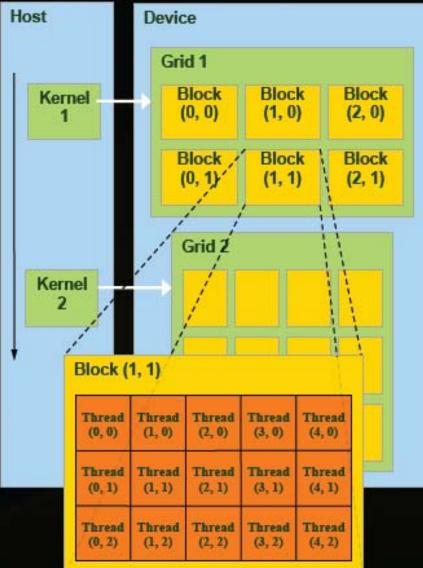
Multiple levels of parallelism

Thread block

- Up to 512 threads per block
- Communicate through shared memory
- Threads guaranteed to be resident
- 🕥 threadIdx, blockIdx
 - __syncthreads()
- Grid of thread blocks
 - f<<<nblocks, nthreads>>>(a,b,c)

Programming Model (SPMD + SIMD): Thread Batching

- A kernel is executed as a grid of thread blocks
 - A thread block is a batch of threads that can cooperate with each other by:
 - Efficiently sharing data through shared memory
 - Synchronizing their execution
 - For hazard-free shared memory accesses
 - Two threads from two different blocks cannot cooperate



3D Bilateral Filtering on the GPU

Algorithm design choices

- How do threads access memory?
- Choices about use of high-speed local caches.
 - Global memory (shared), constant memory, shared memory, texture memory, etc.

• Tunable algorithm parameters

• Thread block size, number of threads per block.

Other Speed Bumps Influencing Design

Limit on number of thread bocks.

- ID and 2D grids of thread blocks.
- No 3D grid of thread blocks.
- Max dim size = 64K.

Limit on number of threads per thread block.

- Max of 512 threads per block.
- Max dims (512,512,64) threads/block.

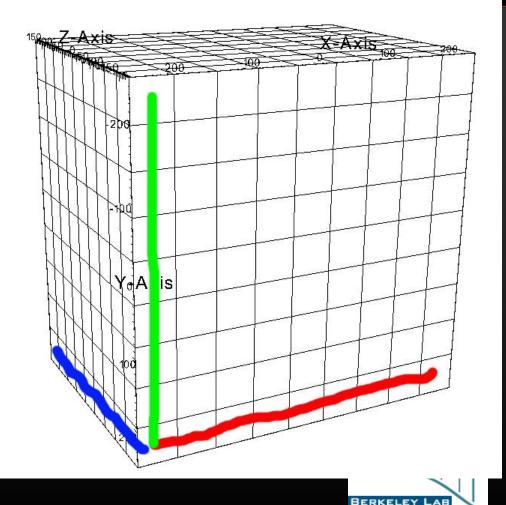
Design Constraints

No 3D grid of thread blocks:

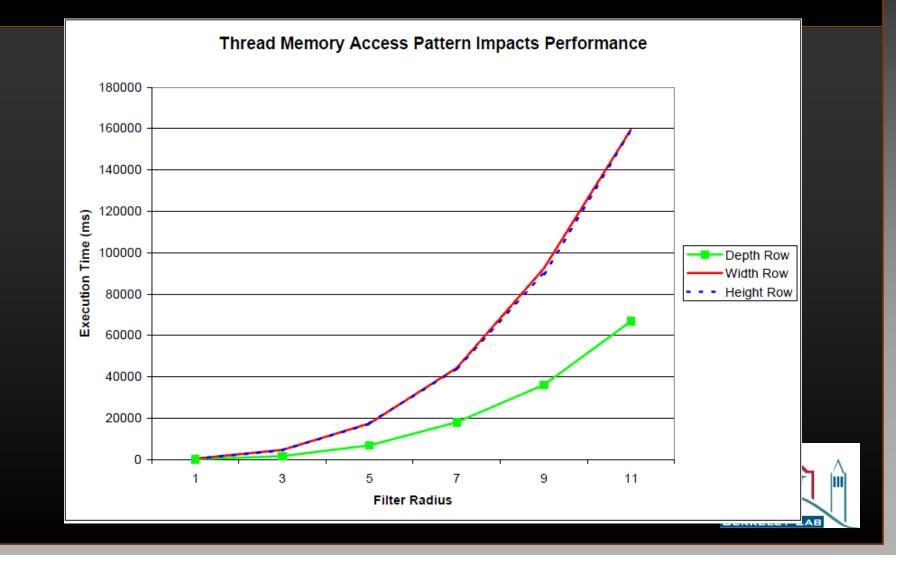
- Our thread kernel must process a row of voxels in width, height or depth.
 - Which works best?
- Thread block array is 2D of some number of threads.
 - Which size/shape works best?

Memory Access Patterns

- Depth-row (blue)
- Height-row (green)
- Width-row (red)
- Question: which access pattern results in best performance?



Memory Access Pattern Test Results

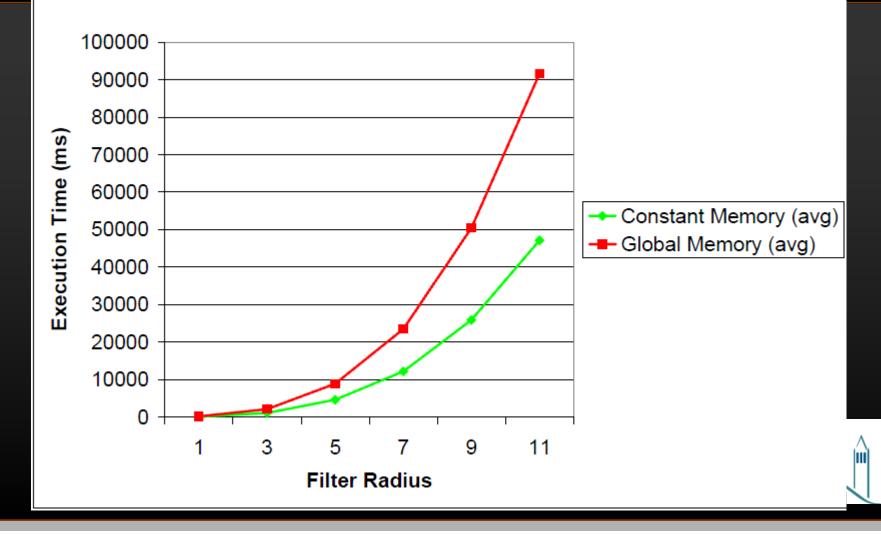


Device Memories

- Global large, high latency, low bandwidth
- Constant small, low-latency, high bandwidth.
 - 64KB <u>not</u> large enough for src, dst volumes
 - 64KB large enough for 1D&3D filter weights up to r=12.
- Shared memory small, 16KB, split into banks across multiprocessors (too small for this project).
- Question: how is performance affected if we use global vs. constant memory for the filter weights?

Device Memories Test Results

Algorithm Performance: Constant vs. Global Memory



Tunable Parameters: Thread Block Size and Shape

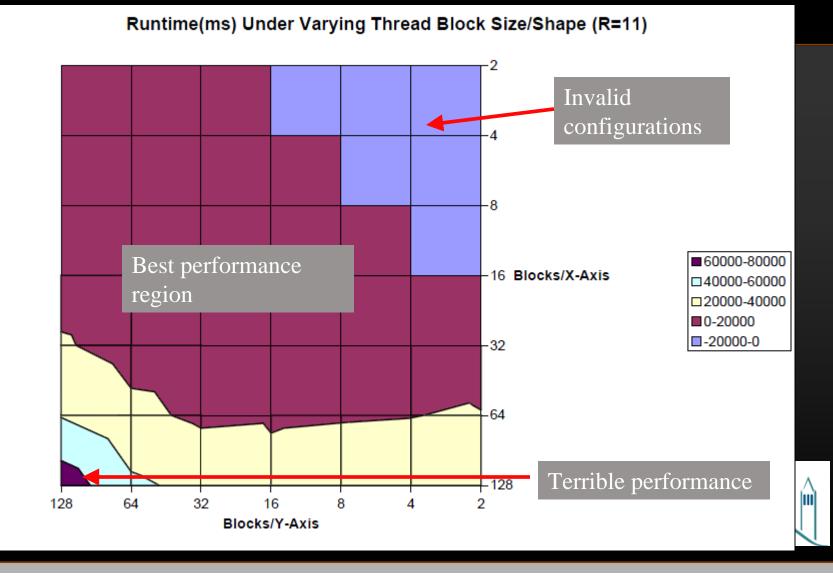
Basic ideas:

- More vs. fewer thread blocks.
 - Fewer thread blocks means more threads per block.
- Shape of thread blocks.
 - Square-shaped vs. oblong.

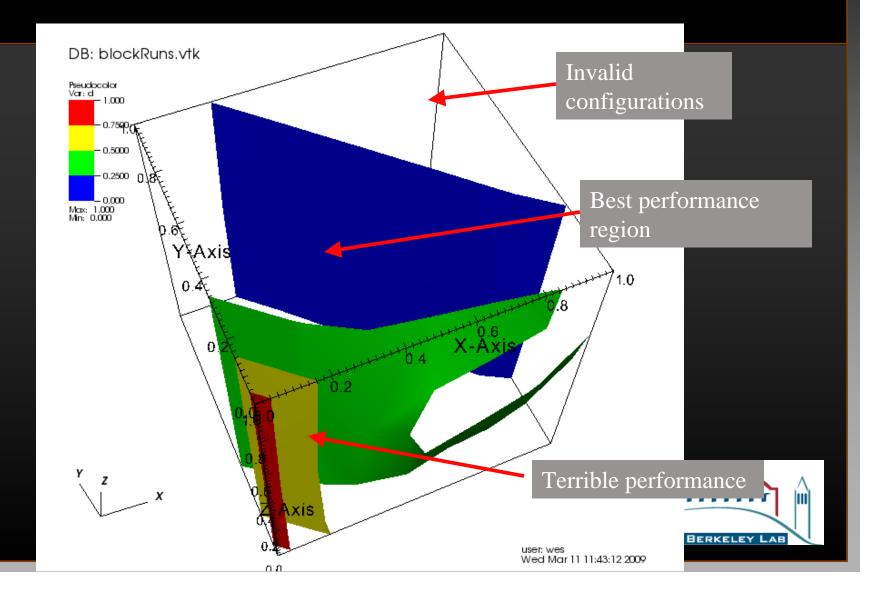
Question: which combination of thread block size and shape results in best performance?

• Note: this is the domain of autotuning.

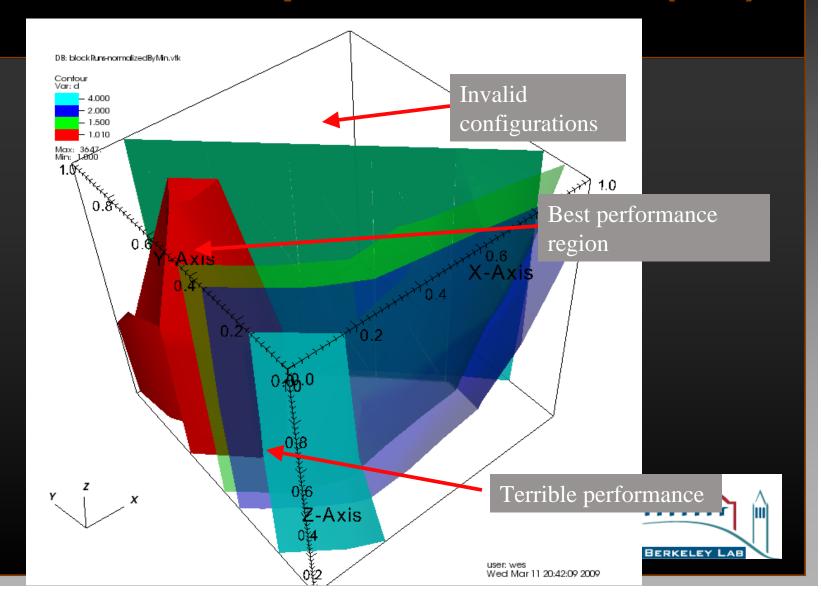
Thread Size/Shape Test Results (1/3)



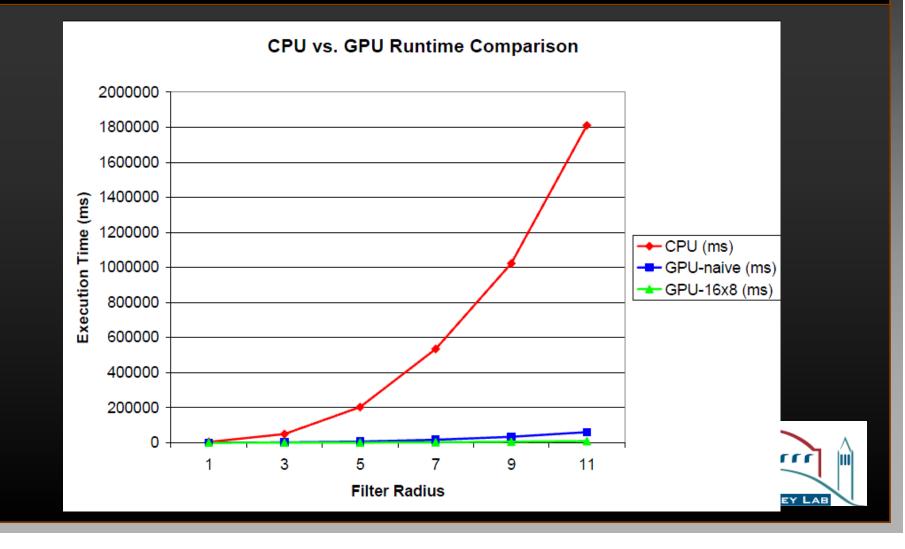
Thread Size/Shape Test Results (2/3)



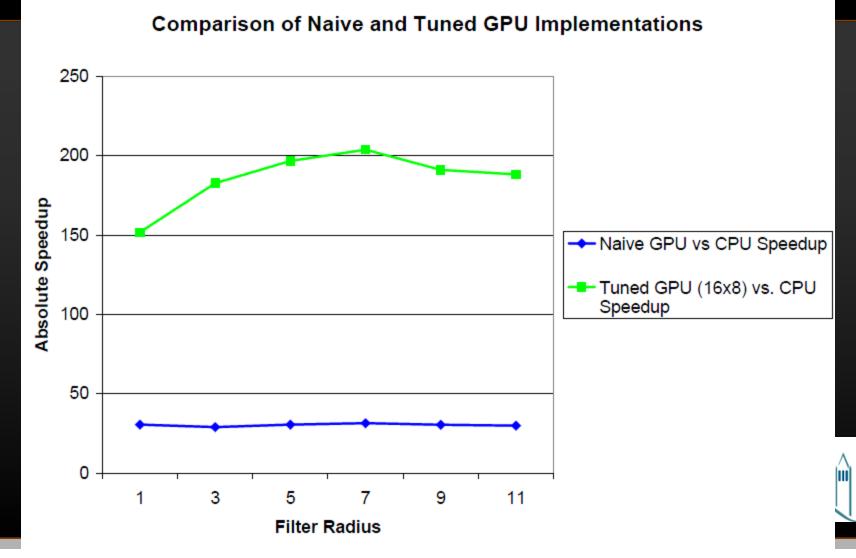
Thread Size/Shape Test Results (3/3)



CPU vs. GPU Performance Comparison (1/2)



CPU vs. GPU Performance Comparison (2/2)



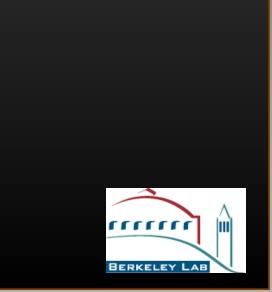
Conclusions/Discussion

GPU configurations with best performance:

- Threads access voxels along depth: <u>coalesced memory access</u>!
- Use Constant memory rather than global memory to hold filter weights
- Thread block size/shape: 16x8

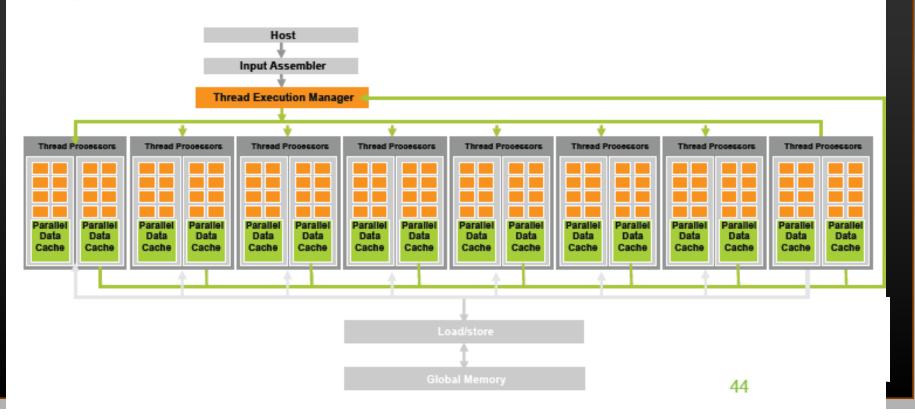
GPU version outperforms CPU implementation

- 30x for naïve implementation.
- 150x-200x for tuned implementation.
- Why? Memory bandwidth (142GB/s vs. ~10GB/s) and keeping the memory pipeline full.



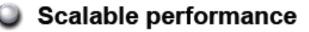
GPU Computing

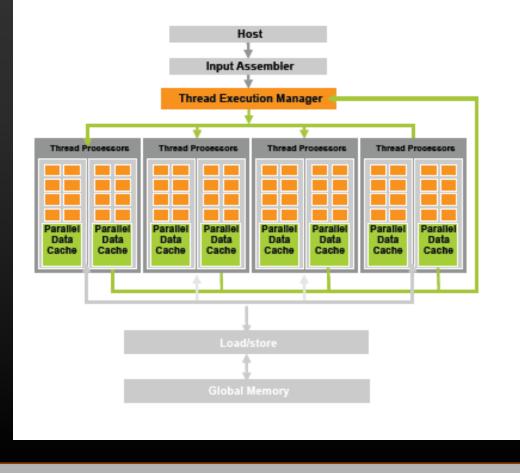
- Processors execute computing threads
- Thread Execution Manager issues threads
- 128 Thread Processors
- Parallel Data Cache accelerates processing

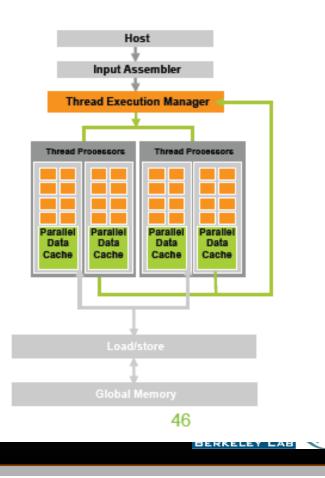


Scaling the Architecture

Same program







Thread Processor Group

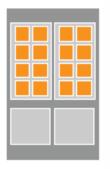
128, 1.35 GHz processors

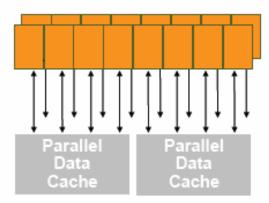
16KB Parallel Data Cache per group

Scalar architecture

IEEE 754 Precision

Thread Processors





\$05: High Performance Computing with CUDA

GPU Computing Model

