I'm from the Virtual Reality Lab and I'm here to help

Bill Sherman Sr. Technical Advisor Advanced Visualization Lab Indiana University

Why Virtual Reality?

 Provides physical immersion "you are there"
 Three dimensional, intuitive interface
 Human scale interface

To What End?

Scientific Visualization
 Simulation and Training

 Scenario training
 Medical procedures

 Building design & review

Immersion

Virtual Reality: the Hype Curve

Technology Trigger:

- **1**989
- VPL Research Inc.
- Affordable Hardware
- Peak of Inflated Expectations:
 - **1992 1995**
 - Media Exposure
- Trough of Disillusionment:
 - **1995 1998?**
- Slope of Enlightenment:
 - 1998 present?
- Plateau of Productivity:

Image by Gartner Group

Exemplar: Crumbs

Early immersive volume visualization tool
 Added interactive measurement enabling feature
 Case: Tim Karr studying fruit flies – multiple visits to the CAVE to make measurements

Exemplar: Comparative Study

Prabhat, et al. (Brown U)

- "A Comparative Study of Desktop, Fishtank, and Cave Systems for the Exploration of Volume Rendered Confocal Data Set"
- Performance benefits measured between Desktop and Immersive Table

Further benefits measured from Immersive Table to CAVE

Exemplar: Atmospheric flow

Effects of vegetation on atmospheric flow
 Gil Bohrer's PhD research
 Free exploration and conversations enabled

through immersive interaction

Getting to here:

From here:

Exemplar: LiDAR tool

LiDAR viewer/manipulator tool of Oliver Kreylos at **UC-Davis** Repeat users from the USGS Allows something that can't easily be done at the desktop

Exemplar: Science Space

Study on learning 3D scientific concepts

- A-level high-school students learned and were tested on concepts of magnetism in 2D
- Didn't really understand the 3D structures
- Immersive 3D presentations found to give students a better understanding

Exemplar: Training

Better to learn dangerous and stressful tasks in a safe environment

Psychological studies have demonstrated that even simple virtual worlds can be sufficiently compelling to produce physiological effects

Scalability of VR

Physical scale Location-based resources vs. local resource CAVE-like displays Wall displays IV-station Software Limited community-wide shared tools

Barriers to entry

Cost
Lower cost allows easier entré
Software

More likely to be the issue

Expertise

Perhaps the most important ingredient

Concluding thoughts

Why not already in high use?
What is the metric?
Training – hours of usage
Sci-Vis – what to count?
Number of hours facility is used?
Number of hours saved by use of the facility?
Number of discoveries enabled?

