Rendering on the Supercomputing Platform

Jon Woodring Los Alamos National Laboratory

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Current LANL approach

UNCLASSIFIED

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

EST 1943

- The visualization and analysis process is composed of a number of activities
 - Analysis and statistics
 - Representation
 - Map simulation data to a visual representation (i.e., geometry)
 - Rendering
 - Map geometry to imagery on the screen
- Already runs on the supercomputer
 - Analysis, statistics, and representation
- Rendering is performed by separate hardware

UNCLASSIFIED

Can we interactively render on the supercomputer, as well?

- Interactivity is critically important for insight
 - 5-10 fps minimum
- High-performance requirements
 - Provided by GPU in graphics cluster
- Maximum parallel compositing
 - 20-30 frames per second (and lower)
 - Network limited
- To meet this target frame rate
 - GPU rendering
 - 300-350 frames per second overkill
 - Maybe CPU rendering? Mesa 3D is too slow...

UNCLASSIFIED

Manta ray tracer 1 million polygons

Single Node Lobo Performance - 1 Million Polygons - 1024x1024 Window

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Ο

Alternative approach we are evaluating

UNCLASSIFIED

Manta Demo in ParaView

Show Demo

- Manta View is a ParaView plugin that implements a 3D view
 - Wraps Manta, provides data, makes render requests
- Use standard VTK depth compositing classes
 - Ice-T or binary swap
- Z (depth) channel added to Manta
- vtkMantaPolyDataMapper
 - Hands triangles to Manta (like a OpenGL display list)
 - Generates tubes and spheres for lines and points

UNCLASSIFIED

Parallel Sort-Last Rendering with Manta in ParaView

Benefits

- Fewer specialized visualization requirements
 - Visualization becomes a supercomputing application
 - One HPC resource to manage
- Data is already there no need to move it
- Scalable to the supercomputer size
- Software rendering
 - Potentially high quality images and flexibility shadows, multi-sampling, reflection, refraction, etc.
 - Manta gets faster the more cores you throw at it

UNCLASSIFIED

Drawbacks

Interactive Queue?

- Supercomputing queues are batch
- An uphill battle to get good interactive queues for vis
- No specialized hardware for visualization task
- GPU is dominant for graphics and rendering
 - Up front cost of going back/developing for CPU rendering
- Frame rate is not high enough for stereo/RAVE/CAVE

UNCLASSIFIED

VPIC – A case study of interactive visualization on the RoadRunner platform

- Running simulation on 4096 RR processors
 - Computing a 8096 x 8096 x 448 grid
- The VPIC team ran their visualization on 128 RR processors
 - Striding and sub-setting to explore and understand their data
- The VPIC team considers interactive visualization critical to the success of their project
 - Bill Daughton, Brian Albright
- The following movie was done on the platform with Mesa 3D rendering
 - Bill interacts with the data on the supercomputer with ParaView
 - He queues up batch movies to be generated after interaction
 - Currently evaluating rendering the VPIC data with Manta

UNCLASSIFIED

Contact

- Jim Ahrens: <u>ahrens@lanl.gov</u>
- Li-Ta Lo: <u>ollie@lanl.gov</u>
- Dave DeMarle: <u>dave.demarle@kitware.com</u>
- John Patchett: <u>patchett@lanl.gov</u>
- Jon Woodring: woodring@lanl.gov
- Research is funded by ASC

UNCLASSIFIED

