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VTK Parallelism (pre 2010)

2H. Vo, et al, Computer Graphics Forum (Proceedings of EuroVis), 2010

Parallelism only at module level !
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VTK Parallelism (post 2010)

3H. Vo, et al, Computer Graphics Forum (Proceedings of EuroVis), 2010
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Issues
• Resources are maintained per each module

• Not suitable for GPU coordinations

• Conforming to VTK pipeline requests is 
making extension to the system to be over 
complicated

• Citations to detailed related work (e.g., 
VisIt, ParaView, DeVIDE, SCIRun, 
VisTrails, ...) are in our manuscript.

4H. Vo, et al, Computer Graphics Forum (Proceedings of EuroVis), 2010
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... then comes HyperFlow

• A true dataflow architecture

• Supporting both GPUs and CPUs

• Flexible to extend to other platforms

• Provide highly-parallel constructs

5H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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HyperFlow Architecture

6H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

TOM 
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Implementation Task 
Implementation 

Task Impl. 

RESOURCES 

• Task-Oriented Module (TOM)

• A set of implementations

• Each has its own resource 
specification
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HyperFlow Architecture

7H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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HyperFlow Architecture

8H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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HyperFlow Architecture

9H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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HyperFlow Library
• roughly 3000 lines of code

• 15 classes, but only need to know 5

• hyperflow::TaskImplementation

• hyperflow::TaskOrientedModule

• hyperflow::Flow

• hyperflow::Data

• hyperflow::ExecutionEngine

Thursday, April 28, 2011



HyperFlow API
• Easy to use: just send flows to the system

Online Submission ID:

Extra material for submission 380

Category:

Abstract— This document provides a more detailed description of the Hyperflow API

!
1 HYPERFLOW API

HyperFlow has an underlying API composed of a set of C++ classes
and functions that expose various ways to construct pipelines to the
developer. The base class to manage all ports and implementation
objects is called TaskOrientedModule. Developers who wish to build
their own modules should instantiate or extend this class. Listing 1
demonstrates the basic interface of TaskOrientedModule and shows a
simple example of how to construct a pipeline in HyperFlow. The
SourceImpl, FilterImpl and SinkImpl classes must inherit from another
important HyperFlow class, TaskImplementation, which is used as the
base class to specify task implementation objects.

1.1 Task Oriented Module

class TaskOrientedModule {
public:
TaskOrientedModule(int nInput, int nOutput,

const char *moduleName);
void addImplementation(TaskImplementation* impl);
static void connect(

TaskOrientedModule* srcModule, int srcPort,
TaskOrientedModule* dstModule, int dstPort

);
... // Additional parameters if subclassed

};
// Construction of the pipeline

TaskOrientedModule Source(0, 1, "Image Reader");
TaskOrientedModule Filter(1, 1, "Gaussian Blur");
TaskOrientedModule Sink(1, 0, "Viewer");
Source.addImplementation(new SourceImpl());
Filter.addImplementation(new FilterImpl());
Sink.addImplementation(new SinkImpl());
TaskOrientedModule::connect(&Source,0,&Filter,0);
TaskOrientedModule::connect(&Filter,0,&Sink,0);

Listing 1: Public interface of the TaskOrientedModule class, and
example Example of pipeline construction in HyperFlow.

1.2 Flow management

An individual Flow can be created using the following API call:

Flow *createFlow(Flow *refFlow=NULL);

If a reference Flow is supplied to this function, the new Flow will
share the same identification and data as the reference. Once a Flow
is created, it can be sent to the VPE scheduler using the method send-

Flows(). All flows sent in the same call to this method are assigned
the same identification, and thus executed with the same priority. The
interface for sendFlows() is:

void sendFlows(
int n, Flow *flows, // flow array
RETTYPE ret, bool all // return policy

);

The value of ret is used to determine when this function should re-
turn, and can be either RET IMMEDIATELY, RET ON DEPLOY or
RET ON FREE. RET IMMEDIATELY determines that the function
should just add the Flows to the scheduler queue and return imme-
diately, while RET ON DEPLOY makes the function return only when

Flows have been assigned to VPEs. Finally, RET ON FREE forces the
function to wait until Flows have been completely executed and their
resources freed. The final argument determines if these return con-
ditions should be met by all Flows or just one of them. This allows
developers to write streaming applications exploiting different levels
of parallelism depending on the application. To illustrate this, we show
below how a typical streaming application can be constructed in Hy-
perFlow:

while <data is coming> do {
Flow *flow = engine->createFlow(data);
engine->sendFlows(1, flow, RET_ON_DEPLOY, true);

}

Typically, initial modules in a pipeline have no input ports. Neverthe-
less, they need to be executed to generate Flows that will trigger the
execution of the entire pipeline. This is done in HyperFlow by sending
an empty Flow to the initial modules, which can be done conveniently
using another EE method, sendUpdate().

By default, HyperFlow defines two types of VPEs: CPU Threads and
CUDA Devices, which map to individual CPU threads and CUDA-
enabled hardware, respectively. The architecture also naturally sup-
ports customizable VPEs, since users can extend the VirtualProcessin-

gElement class, allowing potentially arbitrary computing resources
to be transparently integrated into HyperFlow. Among others, the
two main functions that need to be implemented in VPE subclasses
are enterExectution() and leaveExecution(), responsible for configuring
and finalizing execution contexts, respectively. For the case of CPU
Threads, for instance, this is where thread affinity is enforced.

The VPE scheduler runs an infinite loop, each time consuming a sin-
gle Flow from the priority queue and sending it to the execution list.
Also, the scheduler monitors Flows currently under execution to re-
move them from the execution list and free their resources once they
are done. This loop can be described as:

while (scheduler->waitForSchedulingEvents())
scheduler->scheduleNext();

When scheduleNext() returns, either all Flows have been successfully
mapped to VPEs for execution or there are no available VPEs that
can process the Flows in the queue. In either case, waitForSchedul-

ingChange will wait until new Flows are added to the queue or a VPE
is made available (when a Flow under execution is completed). The
main scheduling strategy of HyperFlow is implemented in the schedu-

leNext() method.

class DImageData : public Data {
public:

DImageData(void *data, DMTYPE medium)
: Data(medium)
{
this->imageData = data;

}

// This function will get call at before the
// destruction of every data objects by HyperFlow
void releaseData(VirtualProcessingElement *vpe)
{
if (this->medium==DM_GPU_MEMORY)

vpe->localFree(this->imageData);
}
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HyperFlow In Action

12H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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• An edge detection pipeline
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HyperFlow In Action

13H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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• Each flow carries a piece of  image

BLUR 

GPU BLUR 

CPU BLUR 

BLEND 

GPU BLEND 

CPU BLEND 

INVERT 

GPU INVERT 

CPU INVERT 

THRESHOLD 

GPU THRESH 

CPU THRESH 

READER 
CPU DECODE 

CPU DECODE 

CPU DECODE 

CPU DECODE 

CPU DECODE 

GPU BLEND 

GPU THRESH 

GPU INVERT 

CPU BLUR 

CPU BLUR 

CPU BLEND 

CPU THRESH 

... f11 f8 f7 f6 

f4 f5 

f2 f3 f1 

Thursday, April 28, 2011



HyperFlow In Action

14H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

FLOW MAPPER   SCHEDULER 

f1 f2 f600 3GPU 8CPU 

• Pairs of (module, flow) are mapped onto available resources
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Experiments with HyperFlow

• Synthetic applications (micro-benchmarks)

• Evaluating scheduling and data handling 
strategies

• Real applications

• Evaluating scalability, performance and 
usability in practice

15H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Micro-benchmarks

• Model actual pipelines without 
implementing real computation code

• Each task implementation is parameterized 
by execution time and input/output ratio

• Generated automatically by Python script

• Benchmark results can be visualized after 
runs with flow animation and Gantt charts 
of resources utilization.

16H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Trace Visualization

17H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Micro-benchmarks Pipelines

18H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Asymmetric Flow Animation

19H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Micro-benchmarks Gantt 
Charts

20H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.

Asymmetric
(57.4% utilization)

Split-Join
(78.9% utilization)

Scan
(83.4% utilization)
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Streaming Edge Detection

21H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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In Situ Pipeline
Simulation Code
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In Situ Pipeline
Simulation Code

Visualization Code
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In Situ Pipeline
Simulation Code

Data Reduction

Analysis/Storage
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In Situ Pipeline
Simulation Code

Data Reduction

Analysis/Storage

> RAM
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In Situ Pipeline
Simulation Code

Data Reduction

Analysis/Storage

> RAM

Sequential Execution:
 Run all simulations
 Run data reduction
✗ data spilled to disks
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In Situ Pipeline
Simulation Code Data Reduction

Analysis/Storage

Check an
d process 

new
 data

Concurrent Execution:
Visualization and Simulation are indendent tasks
  performing visualization as soon as data are ready
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In Situ Pipeline
Simulation Code Data Reduction

Analysis/Storage

Check an
d process 

new
 data

> RAM

✗ still has the memory footprint problem if
Simulation produces data faster than Visualization

Concurrent Execution:
Visualization and Simulation are indendent tasks
  performing visualization as soon as data are ready
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In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage
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In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

Interleaving Simulation and 
Visualization tasks
  low memory footprint
  cache-coherent
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In Situ Streaming Pipeline
Simulation Code

Data Reduction

Analysis/Storage

How to divide processing 
power between Simulation 
and Visualization for parallel 
execution?
•Too much Sim: high memory usage
•Too much Vis: low performance

Interleaving Simulation and 
Visualization tasks
  low memory footprint
  cache-coherent
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Example with threaded VTK

Input: 600 compressed images

Simulation Code Image decompression from disks

Visualization Perform edge detection

Data Reduction: resize images

Analysis/Storage Store resized images to disk
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Example with threaded VTK
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Simulation (image decoding/disk I/O) needs more processing power
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Example with threaded VTK
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Example with threaded VTK
• Fixed resource allocation sacrifices 

memory footprint for performance

• Needs an adaptive scheduler to leverage 
the processing power between simulation 
and visualization
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In Situ Dataflow Architecture -- 
Using HyperFlow

• Tie simulation and visualization together

• Support streaming

• Minimize memory footprint

• Efficient parallel execution

• Lightweight and straightforward integration
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Threaded VTK Example
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Threaded VTK Example
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Threaded VTK Example

... and lower memory footprint!
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Input: 2048x2048x1920 grid

Simulation Code Streaming data from disks

Visualization Isosurface Extraction

Isosurface Example

Each visualization code processes data from several 
outputs of the Simulation code!
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HyperFlow simplifies data dependency
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• Just specify the data communication between modules

• HyperFlow will optimize the data transfer scheduling strategy 
to best use the system resources (including memory usage)
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Isosurface Performance

1 

2 

4 

8 

16 

32 

64 

128 

256 

1 2 4 8 16 32 64 128 256 

sp
ee

du
p 

processors 

Linear Speedup HyperFlow [ILC10] 

Thursday, April 28, 2011



Isosurface Performance
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Higher base memory usage because of the unoptimized data 
dependency but has better scalability as well
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Lessons Learned
• Streaming should be used to avoid the 

memory challenge of in situ vis

• Simulation and Visualization need to be 
closely integrated (in a dataflow archicture) 
to achieve efficient memory usage and 
performance 
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Isocontouring Structured Grid

• Mix multiple data- and task-parallel phases

• Compared to an MPI, hand-tuned parallel streaming 
algorithm by Isenburg et al [2010].

65H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Isocontouring Structured Grid

• Ran on the UV machine with 264-core

• HyperFlow incurred less overhead than MPI

• Both methods only scale to 64-core

66H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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Scalability Issue

67H. Vo, D. Osmari, J. Comba, P. Lindstrom, and C. Silva, submitted, 2011.
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1. Remove computation

bad scaling

2. Remove memory access

good scaling

3. Measure memory access 
bandwidth

sustained ~500GB/s 
after 64 nodesSaturation of memory bandwidth 

is the cause
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